
Static Analysis of Parameterized Loop Nests

for Energy EÆcient Use of Data Caches

Paolo D'Alberto, Alexandru Nicolau, Alexander Veidenbaum, and Rajesh Gupta ?

Information and Computer Science

Center for Embedded Computer Systems

University of California at Irvine

fpaolo,nicolau,alexv,rguptag@ics.uci.edu

Abstract. Caches are an important part of architectural and

compiler low-power strategies by reducing memory accesses

and energy per access. In this paper, we examine eÆcient

utilization of data caches for low power in an adaptive mem-

ory hierarchy. We focus on the optimization of data reuse

through the static analysis of line size adaptivity. We present

an approach that enables the quanti�cation of data misses

w.r.t. cache line size at compile-time. This analysis is imple-

mented in a software package STAMINA. Experimental re-

sults demonstrate e�ectiveness and accuracy of the analytical

results compared to alternative simulation based methods.

1 Introduction

In modern uniprocessor systems the memory hierarchy is

an important concern of performance, area and energy.

It is also the component requiring most of the die area in

systems-on-chip and it is the principal power consumer,

accounting for as much as 20-50% of the total chip power

[12, 8]. In recent years, there has been a great e�ort on

the engineering of several levels of cache, to reduce the

impact on performance/power of caches. The focus of

our work on memory hierarchy is adaptivity in cache

subsystems. We have built an architecture that enables

static and dynamic adaptation of memory hierarchy: its

con�guration and policies [18]. In this paper, we focus

on (compiler-driven) data cache line size adaptation [17,

1, 18]. In fact, the architecture is able to change dynami-

cally the line size (by hardware monitoring or application

instruction) during the execution of the application. To

exploit fully the potential of this adaptation, we need a

way to target it, that is, (statically) determine the appli-

cation cache behavior to trace adaptation for maximum

performance and/or minimum energy dissipation.

Related work on cache behavior analysis can be dis-

tinguished in pro�ling-based and static approaches. Pro-

�ling has been used to determine the memory behavior

by direct measure. Varying some parameters of the ar-

chitecture, the direct measure quanti�es the variation of

the memory performance [11]. Static cache analyzers are

independent from the inputs and focus on the analysis of

? Supported by AMRM DABT63-98-C-0045

perfect loop nests [7, 19]. In [7], the authors propose to

model the cache misses of memory references by equa-

tions, Cache Miss Equations. Then every iteration (or

a sampled version) in the loop nest is checked whether

it satis�es the equations or it does not. The approaches

count the solutions of the equations to achieve an esti-

mation of the number of cache misses.

There are two limitations in the current static ap-

proaches: 1) The loop nest bounds must be known at

compile time. This is not realistic because they are of-

ten parameterized and it is not practical, because they

can be very large. 2) The analyzable loops are sensitive

to tiling loop transformation. For example, if tiling is

performed on the three-loop-algorithm for matrix multi-

plication and the tile sizes do not divide evenly the loop

bounds, the inner loops bounds cannot be represented

by aÆne functions. The resulting nest is not analyzable.

To overcome these limitations, in this paper we pro-

pose a static approach to investigate perfect loop nests

and determine the relation between line size and num-

ber of misses on a per-nest-base. The analysis result is

annotated in the code and it can be used at run time to

set the line size.

The paper is organized as follows. In Section 2 we

present two models for energy dissipation and execution

time in function of the miss ratio. In Section 3 we intro-

duce notations about loop nests and cache equations. In

Section 4 we introduce the theoretical frame work and

our approach. Finally, in Section 5 we show the results

of our analysis for three representative examples.

2 Energy and Line Size

In this section we explore the line size e�ect on energy

dissipation, using a theoretical model based on the cache

models presented and used in [12, 16, 9, 15]. The energy

dissipation per access on a cache, C, with line size, L,
is Eacc(L) = Etag + Eline + Estatus [12, 16]. Etag is the

energy to determine row and line in the cache (for adap-

tive fetch size, it is constant). Eline is the energy to pre-

charge, bu�er and deliver on the bus the line accessed.

Estatus is the energy to check the cache line status (dirty,

11-1

present). In direct mapped caches, the dominant term is

Eline = RidL=Libuse where Ri is a constant for the i-th
level of the memory hierarchy and Libus is the physical

bus width [9]. The energy for a hit on L1 is independent

from the line size, because of subbanking [8, 16]. If �(L)
is the data miss ratio in function of the line size and

jMaccj the memory accesses, the energy dissipated for a

two level memory hierarchy is:

E(L) = jMaccj[(1� �(L))R1 + �(L)R2d
L

L2bus

e] (1)

The access time formula is very similar to the energy

dissipation formula. The access time on L1 is constant

[8] but for other levels it depends on the line size. The

access time is:

T (L) < jMaccj[(1� �(L))T1 + �(L)T2d
L

L2bus

e] (2)

This is an upper bound since some of the accesses

may be pipelined and the access time can be hidden.

For example, with �(L) = 1=L and L > L2bus the

minimum is when L = �
K1L2bus

K2

with Ki equal to either

Ti or Ri. This implies that in general the optimal line

size to achieve minimum access time is di�erent from the

optimal line size to achieve minimum energy dissipation

(for the memory hierarchy system). A very interesting

case is when the line size is shorter than the bus width

(d L

Libus
e = 1), because the line minimizing the miss ratio

is optimal for both performance and energy.

In the rest of the paper we focus our analysis on line

size optimization. This optimization is a classical trade-

o� between reuse and conicts. We report on the analysis

line model that enables the trade-o� analysis, therefore

quantifying the relation between line size and data miss

ratio (�(L)).

3 Background

A perfect loop nest of depth k [14] determines a set (it-

eration space) of integral points (iteration points), in
k
.

The loop order speci�es a strong order between any two

iteration points j = (j0; : : : ; jk�1) and i = (i0, . . . , ik�1).
i precedes j, and we indicate as i C j, if it exists a

0 � l � k � 1 so that in = jn for every n < l and
il < kl. The inequality for two points i � j is veri�ed if

either they coincide or i C j. A geometrical order can be

inferred too. i is smaller than j, i < j, if in � jn for every

n but a l so that il < jl. Graphically, a point i in the

iteration space determines a unique bounded polytope

(fjjj � ig), a point is smaller than another if a bounded

polytope is contained in the other. It is easy to see that

if i < j then i C j, but not vice versa. Informally, the

�rst coordinate i0 of an iteration point i is associated

with the outer loop of the nest and the last coordinate

ik�1 is associated with the inner loop.

Formally, the iteration space is a bounded polytope

(lattice). The iteration space is the polytope fij0 � i �

N(n)g, in short P
i�N(n), where N(n) = Fn +Gp with

F and G matrices of size k� k and p parameters vector.

Given a point t 2 P
i�N(n) and a vector r, it is com-

mon to investigate the bounded polytope P r(t) � fj 2
P
i�N(n)jt � r C j � tg. It is an interval in the itera-

tion space. Indeed, P r(t) = P
i�t

� P
iCt�r

is the dif-

ference of two parameterized polytopes containing the

origin. As introduced in [21], a reference RB of a k-
dimensional array B, i.e. B[i0] : : : [ik�1], has temporal

reuse if in di�erent iteration points the same memory

location is accessed: Addr(RB(i)) = Addr(RB(j)). A

vector r summarizes the reuse such as for every itera-

tion point i, Addr(RB(i)) = Addr(RB(i + r)). We as-

sume that the address of a reference is a linear function:

Addr(RB(i)) = Bi+B�1. For every reuse vector, Br is

0. Spatial reuse is attained when elements of the same

line is accessed. Temporal reuse is a particular case of

spatial reuse.

If referenceRB interferes with referenceRA, the reuse

of RA is prevented by RB . The interference between

memory references is investigated by the Cache Miss

Equation (CME) model (see [7]).

De�nition 1. Given two array references RA (interferer)

and RB (interferee) of the arrays A and B respectively,

we de�ne a subset of points EQ1.

EQ1 �

(
Ai+A�1 = Bt+B�1 + nC + l +Dp

with i 2 P r(t) and t 2 P
i�N(n)

(3)

A and B are integer matrices of size 1�k describing the

index computation. C is the cache size in bytes, jlj < L�1
is the o�set in the cache line and L is the cache line size.

The free variable n 6= 0 describes the distance in number

of cache size blocks between the references. p is a vector

of parameters. r is a reuse vector for RB .

In a direct mapped cache, if the equation has solution,

there is a miss. A k-way cache needs k interferences be-

fore to have a miss. To estimate the number of misses

we need to count the interferences at least L bytes apart.

We analyze references with very short reuse vectors [13].

The interferer has a few chances to interfere with di�er-

ent memory locations. Therefore, the problem is very

often reduced into the existence of interference.

4 The Parameterized Loop Analysis

Let us focus on the determination of interferences and,

indirectly, on a subset of cold misses.1. When p is con-
1 We do not consider capacity misses because they should be

independent from the line size.

11-2

sidered constant, Equation 3 can be rewritten in.

EQ2 �

8
<
:
A�1 �B�1 +

P
d�1
k=0

(Akik � Bktk) = nC + l

with i 2 P r(t) and t 2 P
i�N(n)

(4)

We de�ne the interference density, �E 2 [0; 1], of an
equation as the ratio of iteration points where the inter-

ference equation is satis�ed over all the iteration points.

When the reuse vector is short (distance equal to 1)

-and this is often the case for code optimized to exploit

spatial locality- the Equation 4 can be simpli�ed:

AB�1+

d�1X
k=0

(ABktk) = nC+ l with ABk = Ak�Bk (5)

Property 1. If AB�1 +
Pd�1

k=0(ABktk) = nC + l has so-
lution and ABk mod C = 0 with 0 � k � d � 1, then

�E = 1.

Proof. b
AB

�1+
Pd�1

k=0
(ABktk)

C
c = bAB1

C
+
Pd�1

k=0
(ABktk)

C
c =

bAB1

C
+
Pd�1

k=�1(
ABk

C
tk)c = bAB1

C
c +
Pd�1

k=�1 nktk. If

Equation 5 has solution, it is independent from t, ev-

ery iteration point is solution.

By Property 1 we need to focus on the following equation.

EQ3 �

(
ABm

�1 +
Pd�1

k=0(AB
m

k
tk) = nC + l

with ABm

k
= ABk mod C

(6)

We distinguish integer solutions and rational solutions.

The existence of integer solution assures the existence

of rational solutions. We show a rational solution space

such that contains every integer solution. We then de-

termine the density in the rational space.

Given _q the smallest rational solution to Equation 6

a grid consists of the solution points G(q) = fgj for any
k gk = _qk +

C

ABm
k

pkwith pk natural numberg. A grid cell

is the smallest polygon that has all vertices in the grid.

Given an integer l, a band is the set of rational points

B(l) = f�bj � L < l +
Pd�1

k=0 AB
m

k
�bk < Lg. Note

that the origin always belongs to a band when �L <
l < L. A band cell is the polygon bounded by the two

hyper-planes �L = l +
Pd�1

k=0 AB
m

k
�bk and L = l +Pd�1

k=0 AB
m

k
�bk and the planes 8k 6= j;�bk = �L and

�bk = L for any 0 � j � d � 1. For every grid point

we can determine a band (B(l + ABm
�1)). Every point

in the band has the same solution value for n. In the

band, we can distinguish di�erent band cells. The space

determined by the grid and the bands on the grid points

is dense as formalized in the following property.

Property 2. For any integer solution z, there is a grid

point in the band passing through z.

Proof. By de�nition, ABm
�1 +

P
d�1
k=0AB

m

k
zk = nzC +

lz; we can represent zk = pzk
C

ABm
k

+ zk where zk =

zk mod C

ABm
k

. Therefore, ABm
�1+
P

d�1

k=0AB
m

k
(pzk

C

ABm
k

+

zk) = ABm
�1 +

Pd�1

k=0 pzk +
Pd�1

k=0 AB
m

k
zk = nzC + lz.

We have that(
nz =

P
d�1
k=0 pzk + b

AB
m
�1

+
Pd�1

k=0
AB

m
k zk

C
c

lz = (ABm
�1 +

Pd�1

k=0 AB
m

k
zk) mod C

(7)

We can see that �(d � 1) � b
AB

m
�1

+
Pd�1

k=0
AB

m
k zk

C
c �

d�1 because for every k we have ABm

k
zk = zk mod C.

There are several points in the neighborhood of z and in

the grid that have the same solution in n, therefore in

the band passing through z.

For any grid cell there is only one band splitting the

cell in two, so that two vertices are apart. The band

is determined by two planes, and by construction they

have same inclination of the plane passing through the

the grid points. See Figure 1 for an example in a 2-

dimensional space. Now we are ready to determine the

C/AB 0

C
/A

B 1

2L/AB0

1

2L
/A

B

grid cell

band cell

Fig. 1. Grid cells and band cells in a plane. In a 2-

dimensional space the grid cell is a rectangle and the band

is a between two lines crossing the grid cell on only two grid

points. Two di�erent bands are crossing the remaining two

vertices.

solution density.

Property 3. Every grid cell has C
d

Qd�1

k=0
AB

m
k

solution points.

Property 4. Every band cell has at most
(2L)d

Qd�1

k=0
ABm

k

solu-

tion points.

Property 5. Every grid cell intersects at most three bands

and at most 1
2d�1

(C
2L
)d�1 band cells.

Proof. When d = 2, the solution space is a line. The line

intersecting the cube (rectangle) is a diagonal. The num-

ber of possible integer solutions are not more than the

11-3

number of integer coordinates in each dimension. There-

fore, they are mini2f0;1g(
C

ABi

ABi

2L
). When d > 2, the so-

lution space is a (d-1)-dimensional plane. It intersects

d vertices of the grid cell. We project the grid cell and

the solution on any plane ti = 0. If the projections on

the plane tj = 0 is projection with minimum integer so-

lutions, the number of integer solutions must be at most

1/2 of the minimum integer solutions of the projections

multiplied by b C

2L
c + 1. Therefore, the upper bound of

integer solution is f(d) = 1
2
(C
2L
)f(d�1) with f(2) = C

2L
.

f(d) is 1
2d�1

Q
d�2

i=0 (
C

2L
).

Theorem 1. If AB�1 +
Pd�1

k=0(ABktk) = nC + l has

solution and ABk mod C 6= 0 with 0 � k � d � 1 and

C � 4L, then �E � 1
2d�1

2L
C
.

�E is the ratio of the number of solutions in a band

intersecting a grid cell and the points in a grid cell.

When the reuse vector has distance h, it is possible to
write the Equation 4 as a system of h equations. Each

equation di�ers for a constant term. We approximate

the density as � = min(1; h�E).
The interference existence for an equation is a func-

tion �P (L) where P (L) is a polyhedron determined by

the interference equation and for which the line size L is

parameter. If P (L) has an integral solution, �P (L) = 1;

if it has not integral solution �P (L) = 0. � is a monotone

increasing function. Indeed, if L0 � L1, then �P (L0) �
�P (L1). If there is interference for a line size Li, there is
interference for any larger line size.

Corollary 1. If m > 0 is the number of coeÆcients in

Equation 3 so that (Ai�Bi) mod C 6= 0, then the cache

miss ratio is at most � = �P (L)min(1; h

2m�1
2L
C
). If m =

0, the cache miss ratio is at most �P (L).

4.1 Reduction to Single Reference Interference

We now show how the general case can be reduced to

the simplest case. The simplest case is as follows: there

is an iteration space with jI j iteration points; there is a

reference with only one interference equation EQ1 (one

reuse vector of size h and one interferer); the interference

polyhedron is function of the line size and it is denoted

as P (Li). The number of misses is jI j � � � �P (L).

1. A reference RA has k interferers, and RA has just one

reuse vector r. Every interference equation has den-

sity solution, �i, and the solution existence function,

�Pi(L) (0 � i � k). Since the interferences due to dif-
ferent interferers are independent to each other, we

can add their contribution: �(L) =
Pk

i=0 �i�Pi(L).
2 We identify the function �(L) as interference den-

sity per reference. The upper bound to the number

2 Interferes are truly independent to each other if they are

at least one cache line apart

of misses for a direct mapped cache is jI j � �(L).
If we would model a m-way associative cache, we

could consider as estimation of the number of misses

jI jb�(L)
m

c (this is an approximation, not an upper

bound unless 8i; �i = 1).

2. RA (interferee) and RB (interferer). RA has multi-

ple reuse frig0;m�1 so that r0 > r1 > � � � > rm�1.

Therefore we have P ri(t) � P rj (t) with i < j, and
\k
i=0P

ri(t) = P k(t). We consider only the shortest

reuse, because if the reuse is prevented, there is a

miss. If it is not, there is no miss.

3. RA has k interferers and m reuse vectors. A set

of equations E0 : : : Ek�1 represent the interferences

with di�erent references. For each equation we con-

sider only the shortest reuse vector.

For every reference we are able to quantify the inter-

ference. In the following, we investigate the e�ect of

interference on spatial reuse. Larger line size increases

interference (it decreases performance) but also spatial

reuse.

4.2 Interference and Reuse Trade-o�

In this section we consider the e�ect of the line size on

cache reuse and the trade-o� with conicts. Every ref-

erence reuse vector has a type of reuse, i.e. spatial or

temporal. If a reference has spatial reuse and no interfer-

ence, the reference has a miss every 1
`
access, where ` is

the line size in data elements.3 If Interference is present

some of the reuse can be prevented. The the miss den-

sity for spatial reuse is �(L) = 1
`
+ �(L) if �(L) < 1,

�(L) = �(L) otherwise. It is always possible to label the
references so that Ri with 0 � i � n � 1 are references

with spatial reuse and Ri with n � i � m� 1 with tem-

poral reuse. The density of the misses for the loop nest

is �(L) =
Pn�1

i=0 �i(L) +
Pm�1

i=n �i(L).

�(L) � jI j � �(L) is the number of misses for which

the line size has any e�ect. It is an estimation of the

e�ect of line size on cache performance.

5 STAMINA Implementation Results

The reuse and interference analysis is implemented in the

software package StaMInA (StaticModeling of Interference

And reuse as a part of AMRM compiler suite). It is

built on top of SUIF 1.3 compiler adapting the code de-

veloped in [7] and using polylib [20, 4, 3, 5]. We consider

three examples to explore three important aspects of our

analysis.

3 In general it would be h

`
where h is the access stride/reuse

vector length with h < `

11-4

5.1 Swim from SPEC 2000

swim is a scienti�c application. It has a main loop with

four function calls. Each function has a loop nest for

which the bounds are parameters introduced at run time.

For sake of exposition, we present the analysis for the

main loop nest of one procedure calc1() (Figure 3 writ-

ten in C language). We analyze the interference for two

di�erent matrix sizes, the reference size 1335� 1335 and

the power of two 1024 � 1024. For the reference size,

there is no interference for any cache line. For power of

two matrices there is always interference.

The execution of SWIM with reference input takes

1hr on a sun ultra 5, 450MHz. Any full simulation takes

at least 50 times more. Even the single loop simulation is

time consuming. Our analysis takes less than one minute

for each routine whether there is interference or there is

no interference.

Due to the number of equations to verify, it is very

diÆcult to verify by hand the accuracy of the analysis.

We simulate 10 of the 800 calls to the calc1 routine using
cachesim5 from Shade [6]. The simulation results con�rm

our analysis.

5.2 Self Interference

We now consider self interference. Self interference hap-

pens when two references of the same array, or the same

reference in di�erent iterations, interfere in cache. The

example, Figure 2, is the composition of six loops with

only one memory reference in each. Each memory ref-

erence has a di�erent spatial reuse and it is very long.

STAMINA recognizes that the interval between reuses

Loop 0
Line 8 16 32 64 128 256

�ct(L) 0.50 0.25 1.00 1.00 1.00 1.00

Loop 1 �ct(L) 0.50 0.25 0.12 1.00 1.00 1.00

Loop 2 �ct(L) 0.50 0.25 0.12 0.06 1.00 1.00

Loop 3 �ct(L) 0.50 0.25 0.12 0.06 0.03 1.00

Loop 4 �ct(L) 0.00 0.00 0.00 0.00 0.00 0.00

Loop 5 �ct(L) 0.00 0.00 0.00 0.00 0.00 0.00

Table 1. Self interference example. Loop four and �ve have

no interference dependent from the line size, the output is set

to zero

is after one iteration of the outer loop. It computes

the reuse distance and, in the current implementation,

it �xes the value of the interference density at � = 1. It

assumes there is a miss due to capacity (in general the

distance is not a constant and it cannot be compared to

the cache size). For this particular case, it is a tight esti-

mation. In general it is an over estimation. The existence

of interference plays the main role, it discriminates when

there is interference and when to count the interferences.

In Table 1, we report the results of the analysis.

5.3 Tiling and Matrix Multiply

We analyze two variations of the common ijk-matrix-

multiply algorithm (e.g. [10]). In Figure 4 the size of

matrix A is not a power of two, but it is for B and C. The
size of A has been chosen so that if there is interference

due the reference on A, it does not happen very often.

The index computation for A is parameterized (0 � m �
64 and 0 � n � 64). Accesses on matrix C interfere

with the accesses on B. Due to the upper bounds we

choose for the parameters, A does not interfere with any

other matrix. Even if it could, the interference density

would be small. We are able to distinguish two di�erent

contribution: at compile time, �ct(L), and at run time,

�rt(L). In Table 2 we can see that the suggested line

Line 8 16 32 64 128 256

�ct(L) 2.00 1.00 2.00 2.00 2.00 2.00

�rt(L) 0.00 0.00 0.00 0.00 0.00 0.00

Table 2. Interference table, for the procedure in Figure 4.

Reference on A does not interfere with C and B with 0 �
n;m � 64. It would if we use lager parameters values. Note

that the optimal line size is 16B. With a physical line of 32B

the line size is optimal for both performance and energy.

size is 16B. This example has been introduced to show

a case where the optimal line reduces interference and it

is smaller than the common 32B line. Let us consider

Line 8 16 32 64 128 256

�ct(L) 0.00 0.00 0.00 0.00 0.00 0.00

�rt(L) 2.00 2.00 2.00 2.00 2.01 2.03

Table 3. Interference table for the procedure

ijk matrix multiply 4 in Figure 5

a more interesting example, where we analyze the tiled

version of matrix multiplication Figure 5. We analyze

only the loop nest in the procedure ijk matrix multiply 4,

and the result of the analysis is in Table 3. Every matrix

interferes with every matrix. The interference due to

matrix A is negligible since is an invariant for the inner

loop. The interference between C and B can be at every

iteration point. There is no interference whenever jm�
njmod C = L. This example is very peculiar because the

line size is not set once for loop nest, it is determined at

run time.

In the example in Figure 4 the analysis takes no more

than two minutes. For the example in Figure 5 it takes

11-5

more than 8 hrs, on a Sun ultra 5 450MHz. The dif-

ference of the execution times is expected. Most of the

time is spent in the search for the existence of the integer

solution. This is our performance bottleneck and it will

be subject of further investigations/optimizations.

6 Summary and Future Work

We present a fast approach to statically determine the

line size e�ect on the cache behavior of scienti�c appli-

cations. We use the static cache model introduced in

[7] and we present an approach to analyze parameter-

ized loop bounds and memory references. The approach

is designed to investigate the trade-o� between spatial

reuse and interferences of loop nests on direct mapped

cache. Experimental results demonstrate the accuracy

and eÆciency of our approach. We plan to expand our

implementation to consider multi-way associative caches

and to improve the performance of the existence test, by

applying the gcd-test as proposed in [2].

7 Acknowledgment

The authors wish to thank Vincent Loechner, Sommath

Ghosh and the members of AMRM project for their

help on Ehrhart polynomials, the existence test, cache

miss equation determination and our countless discus-

sions. Financial support for this research was provided

by DARPA/ITO under contract DABT63-98-C-0045.

References

1. E.Anderson, T.Van Vleet, L.Brown, J.Baer and

A.R.Karlin \On the Performance Potential of Dynamic

Cache Line Sizes". Technical Report UW-CSE-99-02-01.

2. Utpal Banerjee \Loop Transformations for Restructuring

Compilers The Foundations". Kluwer Academic Publish-

ers, January 1993

3. Ph. Clauss, \Advances in parameterized linear diophan-

tine equations for precise program analysis", [ICPS RR

98-02], September 1998.

4. Ph. Clauss, V. Loechner, \Parametric Analysis of Poly-

hedral Iteration Spaces", research report ICPS 96-04,

IEEE Int. Conf. on Application Speci�c Array Proces-

sors, ASAP'96, Chicago, Illinois, August 1996.

5. Ph. Clauss, \Counting Solutions to Linear and Nonlinear

Constraints through Ehrhart polynomials: Applications

to Analyze and Transform Scienti�c Programs", research

report ICPS 96-03, 10th ACM Int. Conf. on Supercom-

puting, ICS'96, May 1996.

6. B. Cmelik and D. Keppel \Shade: a fast instruction-set

simulator for execution pro�ling" Proceedings of the 1994

conference on Measurement and modeling of computer

systems, 1994, Pages 128 - 137

7. S.Ghosh, M.Martonosi and S.Malik \Cache Miss Equa-

tions: a Compiler Framework for Analyzing and Tunin

Memory Behavior" ACM Transactions on Programming

Languages and Systems, Vol. 21, No. 4, July 1999, Pages

703-746.

8. K.Ghose and M.B.Kamble \Reducing power in super-

scalar processor caches using subbanking, multiple line

bu�ers and bit-line segmentation". Proceedings 1999 in-

ternational symposium on Low power electronics and de-

sign, 1999, Pages 70 - 75

9. T.D.Givargis, J.Henkel and F.Vahid \em Interface and

cache power exploration for core-based embedded system

design". Proceeding of the 1999 international conference

on Computer-aided design, 1999, Pages 270 - 273

10. G.H. Golub, C.F. Van Loan \Matrix Computations"

Johns Hopkins Series in the Mathematical Sciences.

11. X.Ji, D.Nicolaescu, A.Veidembaum, A.Nicolau and

R.Gupta \Compiler-Directed Cache Assist Adaptivity".

ICS Techincal Report #00 17, May 2000.

12. M.B.Kamble and K.Ghose \Analytical Energy Dissipa-

tion models for Low-power Caches" Proceedings of the

1997 international symposium on Low power electronics

and design, 1997, Pages 143 - 148

13. K.S.McKinley and O.Temam \A Quantitative Analysis

of Loop Nest Locality". APLOS VII 10/96 MA, USA.

14. S.S. Muchnick \Advanced compiler design implementa-

tion". Morgan Kaufman.

15. S.J.E.Wilton and N.P.Jouppi \CACTI: an Enhanced

Cache Access and Cycle Time Model". IEEE Journal of

Solid-State Circuits. Vol. 31. No. 5, May 1996.

16. C.Su and A.M. Despain \Cache design trade-o�s for

power and performance optimization: a case study Pro-

ceedings 1995 international symposium on Low power de-

sign, 1995, Pages 63 - 68

17. . P.Van Vleet, E.Anderson, L.Brown, J.Baer and

A.R.Karlin \Pursuing the Performance Potential of Dy-

namic Cache Line Sizes". Int. Conference on Computer

Design (ICDD'99) October 1999.

18. A.V. Veidenbaum,W. Tang, R. Gupta, A. Nicolau and X.

Ji, "Adaptive Cache Line Size to Application Behavior",

In Proceedings of International Conference on Supercom-

puting (ICS). June 1999, pp.145-154.

19. X. Vera, J. Llosa, A. Gonzales and N. Bermudo, \A Fast

and Accurate Approach to Analyze Cache Memory Be-

havior" EUROPAR 2000

20. D.K. Wilde \A library for Doing Polyhedral Operations".

Publication interne N 785, 1993

21. M.E.Wolf and M.S.Lam A data Locality Optimizing al-

gorithm Proc. of the ACM SIGPLAN'91 Conference

on programming languages design and implementation,

Toronto, Ontario, Canada, June 26-28, 1991, pages 30-

44.

11-6

#define CACHE_SIZE 16384

int A[CACHE_SIZE /16][(CACHE_SIZE+16)/4];
int B[CACHE_SIZE / 32][(CACHE_SIZE+32)/4];
int C[CACHE_SIZE / 64][(CACHE_SIZE+64)/4];
int D[CACHE_SIZE / 128][(CACHE_SIZE+128)/4];
int E[CACHE_SIZE / 256][(CACHE_SIZE+256)/4];
int F[CACHE_SIZE / 512][(CACHE_SIZE+512)/4];

int
main ()
{
 int i,j,k,l;
 int step;
 l = 0;

 for (j=0;j<4;j++) {
 for (k = 0; k < CACHE_SIZE / 16 k++)
 A[k][j]++;
 }

 for (j=0;j<8;j++) {
 for (k = 0; k < CACHE_SIZE / 32; k++)
 B[k][j]++;
 }

 for (j=0;j<16;j++) {
 for (k = 0; k < CACHE_SIZE / 64; k++)
 C[k][j]++;
 }

 for (j=0;j<32;j++) {
 for (k = 0; k < CACHE_SIZE / 128; k++)
 D[k][j]++;

 }

 for (j=0;j<64;j++) {
 for (k = 0; k < CACHE_SIZE / 256; k++)
 E[k][j]++;
 }

 for (j=0;j<128;j++) {
 for (k = 0; k < CACHE_SIZE / 512; k++)
 F[k][j]++;
 }

 return 0;
}

Fig. 2. Self Interference and analysis results

#define N1 1335
#define N2 1335

extern double U[N1][N2], V[N1][N2], P[N1][N2],UNEW[N1][N2], VNEW[N1][N2],
PNEW[N1][N2], UOLD[N1][N2], VOLD[N1][N2], POLD[N1][N2],
CU[N1][N2], CV[N1][N2], Z[N1][N2], H[N1][N2], PSI[N1][N2];

extern double D0, DX, DY;

void calc1(int M, int N) {
 int i,j;
 double FSDX,FSDY;

 for (i=0;i<M;i++)
 for (j=0;j<N;j++) {

 // RN 0 = 1 2 3
 CU[i+1][j] = D0*(P[i+1][j]+P[i][j])*U[i+1][j];
 //C # 1 2 3 0

 //C RN 4 5 2 6
 CV[i][j+1] = D0*(P[i][j+1]+P[i][j])*V[i][j+1];
 //C # 5 2 6 4
 //C RN 7 8 6 9
 Z[i+1][j+1] = (FSDX*(V[i+1][j+1]-V[i][j+1])-FSDY*(U[i+1][j+1]
 /* C RN 3 2 1 10 5 */

 -U[i+1][j]))/(P[i][j]+P[i+1][j]+P[i+1][j+1]+P[i][j+1]);
 // # 8 6 9 3 2 1 10 5 7
 // RN 11 2 3 3 12 12
 H[i][j] = P[i][j]+D0*(U[i+1][j]*U[i+1][j]+U[i][j]*U[i][j]
 // RN 9 9 13 13

 +V[i][j+1]*V[i][j+1]+V[i][j]*V[i][j]);
 // # 3 12 9 13 2 11
 }

}

Fig. 3. SWIM: calc1() in C code, in the comment lines the

reference number and the order of the references are speci�ed.

Fig. 4. Matrix Multiply. Two parameters: loop bounds and

A o�set. The parameters n and m up to 64

Fig. 5. Tiling of Matrix Multiply. 6 parameters: loop bounds

and A,B and C o�sets. The �rst procedure describes the

computation on a tile.

11-7

