
Discrete Fourier Transform Compiler for FPGA and CPU/FPGA
Partitioned Implementations∗

Paolo D’Alberto Peter Milder Franz Franchetti
James C. Hoe Markus Püschel Jośe Moura

Electrical and Computer Engineering
Carnegie Mellon University

Introduction
HW/SW partitioned implementations promise to offer the best of both worlds—the performance and ef-
ficiency of HW and the flexibility of SW. This remains an under-tapped paradigm due to its high design
complexity, made worse by inadequate support in current tools and the lack of engineers trained in this de-
sign discipline. SPIRAL is a fully automatic design generation framework for the linear DSP transform do-
main. In the past, we have shown that SPIRAL automatically generates platform optimized DSP-transform
software that is better than the best available hand-crafted vendor code [3]. Below, we briefly overview our
current endeavor to extend SPIRAL to produce automatically high-quality HW only and HW/SW partitioned
implementations.

Generating DFT IP blocks
Approach. Given the well-understood regular structure of linear DSP transforms, one can fully capture the
available design space in a automatic design synthesis system. Previously, we developed parametrized DFT
core generator ([1]) specific for the Pease DFT algorithms. Extending the SPIRAL formula generation and
manipulation framework (originally for software only) we completed a general formula-to-hardware syn-
thesis flow that produces, from different formula-level choices, a wide range of synthesizable RTL Verilog
implementations, including latency-efficient iterative micro-architectures and throughput-efficient streaming
micro-architectures.

Results.Fig. 1 shows area/latency tradeoffs of different Spiral generated HW implementations of DFT-
1024, when targeting the Xilinx Virtex-II FPGA. (In the figure, points lower and further left is better.) The
implementations differ in the degree of data-path reuse as well as in their underlying algorithmic structure;
implementations corresponding to the same family of formulas are show in series. Our tool can produce
a design with comparable area and latency as Xilinx LogiCore DFT-1024, as well as the entire range of
tradeoff available on the Pareto front. Automatic space exploration makes it feasible to find a Pareto front
that comprises implementations from different formula choices.

Generating hardware/software partitioned DFT implementations
With the above extension, Spiral is capable of generating both, software and hardware implementations of
signal transforms. This makes it possible to tackle the more complex problem of generating and evaluating
SW/HW partitioned implementations. We performed first experiments in this direction, again for the DFT,
on a Xilinx Virtex-II-Pro FPGA with an embedded PowerPC fixed-point processor running at 300 MHz.
The motivation for partitioning is in the potential of achieving SW-like flexibility while improving both,
performance and energy efficiency.

Approach. The approach to SW/HW partitioning is in concept simple. We decide on one or several
DFT cores, i.e., sizes, to be mapped to HW. The SW uses these cores throught a specific interface. Then we
generate an entire library of DFTs (say, all two-power sizes) that may use the HW cores, if it is beneficial,
and performs the (remaining) computation in SW.
∗This work was supported by DARPA through the Department of Interior grant NBCH1050009 and by NSF through awards

ACR-0234293 and ITR/NGS-0325687.



0

10

20

30

40

0 5000 10000 15000 20000 25000

slices

la
te

n
c
y
 (

u
s
)

radix 2

radix 4

radix 32

stream radix 2

stream radix 4

Figure 1: Area/latency trade-off of various different Spiral generated HW implementations of the DFT of size 1024.

0

100

200

300

400

500

600

700

800

900

8 16 32 64 128 256 512 1024 2048 4096
Problem size

P
e
rf

o
rm

a
n

c
e
 (

M
fp

o
p

/s
)

HW/SW throughput

HW/SW latency

SW only

0

20

40

60

80

100

8 16 32 64 128 256 512 1024 2048 4096

Problem size

E
n

e
rg

y
 e

ff
ic

ie
n

c
y
 (

M
fp

o
p

/J
)

HW/SW partitioned

SW only

Figure 2: Evaluation of Spiral generated HW/SW partitioned DFT implementations for two-power sizes4 ≤ n ≤ 4096.
Performance (left) and energy efficiency (right). Higher is better. The DFTs of size 32 and 256 are mapped to HW.

As HW-DFT basic blocks, we deploy throughput optimized cores due to the structure of the fast Fourier
transform (FFT), which decomposes a large DFT into parallel stages of smaller DFTs. When these cores are
pipelined in HW, expensive copy operations can be overlapped with computations for improve performance.
Further, we allow the HW DFT cores to be also used for smaller sizes. This is possible because of the DFT
algebraic properties and we produce what we call “virtual DFT cores.”

Results.Fig. 2 shows preliminary experimental results with Spiral generated SW/HW partitioned DFT
implementations. First, we generated a DFT SW library (16-bit fixed point) across a range of two-power
sizes. The performance achieved is between 100 and 200 Mfpop/s1 and the energy efficiency (physically
measured) around 20 Mfpop/J).

Next we mapped HW DFT cores of size 32 and 256 to hardware and allowed the virtual core sizes of
16, 64, and 128. The SW/HW partitioned library subsequently generated has a 50–500% (depending on the
size) better performance than the SW only solution. The energy efficiency is also improved as shown.

References
[1] G. Nordin, P. Milder, J. Hoe, and M. P̈uschel. Automatic generation of customized discrete Fourier transform IPs.

In Proceedings of the 42nd Annual Conference on Design Automation, 2005.

[2] Markus P̈uschel, Jośe M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan W. Singer, Jianxin
Xiong, Franz Franchetti, Aca Gačić, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo.
SPIRAL: Code generation for DSP transforms.Proc. of the IEEE, 93(2):232–275, 2005. Special issue onProgram
Generation, Optimization, and Adaptation.

[3] Spiral web site. www.spiral.net.

1Mega fixed-point operations per second.


